Fixation and Permeabilization Approaches for Scanning Electrochemical Microscopy of Living Cells.

نویسندگان

  • Alexandra Bondarenko
  • Tzu-En Lin
  • Petar Stupar
  • Andreas Lesch
  • Fernando Cortés-Salazar
  • Hubert H Girault
  • Horst Pick
چکیده

Scanning electrochemical microscopy (SECM) has been widely used for the electrochemical imaging of dynamic topographical and metabolic changes in alive adherent mammalian cells. However, extracting intracellular information by SECM is challenging, since it requires redox species to travel in and out the lipid cell membrane. Herein, we present cell fixation and permeabilization approaches as an alternative tool for visualizing cell properties by SECM. With this aim, adherent cells were analyzed in the SECM feedback mode in three different conditions: (i) alive; (ii) fixed, and (iii) fixed and permeabilized. The fixation was carried out with formaldehyde and does not damage lipid membranes. Therefore, this strategy can be used for the SECM investigation of cell topography or the passive transport of the redox mediator into the cells. Additional permeabilization of the cell membrane after fixation enables the analysis of the intracellular content through the coupling of SECM with immunoassay strategies for the detection of specific biomarkers. The latter was successfully applied as an easy and fast screening approach to detect the expression of the melanoma-associated marker tyrosinase in adherent melanoma cell lines corresponding to different cancer progression stages using the SECM substrate generation-tip collection mode. The present approach is simple, fast, and reliable and can open new ways to analyze cell cultures with electrochemically based scanning probe techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy.

Immunofluorescence microscopy is widely used to characterize the cellular distribution of both soluble and structural proteins. Control experiments generally address only the specificity of the antibodies used. The permeabilization/fixation conditions used to prepare cells for antibody application are assumed to preserve faithfully the in vivo distributions of the protein(s) being examined. We ...

متن کامل

Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM).

Changes in HeLa cell morphology, membrane permeability, and viability caused by the presence of Triton X-100 (TX100), a nonionic surfactant, were studied by scanning electrochemical microscopy (SECM). No change in membrane permeability was found at concentrations of 0.15 mM or lower during an experimental period of 30 to 60 min. Permeability of the cell membrane to the otherwise impermeable, hi...

متن کامل

Chemically imaging living cells by scanning electrochemical microscopy.

Scanning electrochemical microscopy (SECM) is useful in probing and characterizing interfaces at high resolution. In this paper, the general principles of this technique are described and several applications of SECM to biological systems, particularly to living cells, is discussed, along with several example systems. Thiodione was detected and monitored electrochemically during the treatment o...

متن کامل

Synthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method

Superparamagnetic few-layer graphene nanocomposites (FLG- NCs) can be used for many technological applications, such as solar cells, batteries, touch panels and supercapacitors. In this work, we applied electrochemical exfoliation method as a simple, one step and economical technique to fabricate FLG- NCs. The fabricated Superparamagnetic FLG- NCs were characterized by X-ray diffraction (XRD), ...

متن کامل

Nanopipette exploring nanoworld

Nanopipettes, with tip orifices on the order of tens to hundreds of nanometers, have been utilized in the fields of analytical chemistry and nanophysiology. Nanopipettes make nanofabrication possible at liquid/solid interfaces. Moreover, they are utilized in time-resolved measurements and for imaging biological materials, e.g., living cells, by using techniques such as scanning ion-conductance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 88 23  شماره 

صفحات  -

تاریخ انتشار 2016